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Numerical simulations of Liesegang systems are performed both with a prenucleation and a postnucleation
model. Special interest is dedicated to two-dimensional morphological peculiarities of ring systems. With the
prenucleation model, apparent bifurcations or branch points (anastomoses) can be created by adjacent trains
of bands having different interband spaces or band positions shifted to each other. Spiral systems arise when
the circular symmetry of concentric Liesegang rings is broken by at least one branch point. The postnucleation
model comprises both formation of colloidal particles which form a turbidity zone and transition of these
nuclei to solid particles which undergo Ostwald ripening at the expense of the colloids. The model demonstrates
how Liesegang bands of solid particles arise from a primary turbidity zone which surrounds the expanding
ring system. Because of rapid competitive particle growth, rings or bands may no longer grow continuously
in transversal directions. They become arranged in chains of single filaments or spots forming a transversal
rhythm. Finally, longitudinal alleys of gaps appear in continuous trains of Liesegang bands.

1. Introduction

An early report on periodic precipitation, with calcium
oxalate, was given by W. M. Ord in 1879.1 Systematic
investigation of this phenomenon was initiated by the experi-
ments of photochemist R. Ed. Liesegang in 1896.2 His classical
experiment on a glass plate consisted of radial diffusion of silver
nitrate in a photogelatin layer with potassium dichromate. Both
visual attraction of the periodic precipitation and the apparent
similarity to geological textures3-5 and patterns in plant and
animal biology6,7 continue to stimulate research.8-12

Periodic precipitation has raised from a curiosity to a general
phenomenon in colloid chemistry: First, it does not depend on
special choice of diffusion media. Besides gelatin or other gels,
granular or porous media like quartz sand, sulfur powder,
kieselguhr, and gypsum may serve as diffusion matrices.9,10,13

Periodic precipitation was also observed in gas phase14,15 and
in pure water.16 Further, beside silver chromate there was found
a broad series of hardly soluble salts, pure metals such as gold
and mercury, and even organic compounds forming periodic
precipitates.9,10,13Finally, the phenomenon occurs independently
if the precipitating matter is formed in situ by chemical reaction
or if the precipitation takes place in evaporating solutions7 or
slowly cooling melts.17

Because of the complexity of the Liesegang mechanism
arising from the interaction of involved processes, it is only
partly understood. The following processes should be taken into
account: (1) Chemical reaction and electrolytic dissociation.
(2) Concentration dependency of diffusion. (3) Formation of
colloid particles prior to precipitation. (4) Coagulation of colloid
particles or accumulation of ions. (5) Transition from colloid
to crystal phase with increasing supersaturation. (6) Competitive
particle growth (Ostwald ripening).

Considering aspects of these processes, different types of
models were proposed to describe the phenomenon of periodic
banding, as such, and the spacing laws and morphological

characteristics of bands. The first model was introduced by
Wilhelm Ostwald in 1897 and based on supersaturation of silver
chromate. His cycle of supersaturation, precipitation, and
depletion still delivers the core of each recent prenucleation
model.18 The supersaturation theory was modeled by Prager,19

Henisch,10-11 Dee,20 and Le Van and Ross,21 the latter20,21

emphasizing the necessity of a steep dependence of the
nucleation rate on supersaturation.

Band-forming coagulation of colloid particles was proposed
by Dhar and Chatterji.22 The coagulation theory was treated later
by Flicker and Ross16 and Büki et al.23 Flicker also showed
that band formation may take place in gradient-free systems on
the basis of autocatalytic coagulation and growth of colloid
particles. The recursive influence of electrolyte production on
precipitation was considered by Wolfgang Ostwald in his
“Diffusion Wave Theory”.24 The role of fluctuations in the
nucleation process in periodic precipitation can be considered
by cellular automata.25

On the basis of experimental observations,26-28 Ortoleva et
al. proposed that sole competition of growing particles can
produce bands, even in absence of strong external gradients.29-31,33

The competitive particle growth (CPG) model represented an
application of the Lifshitz-Slyozov instability32 of competing
particle ensembles. Also, morphological characteristics of bands,
such as the formation of precipitate-free alleys, single filaments,
or spots, can be described by employing postnucleation
models.33-37

With respect to morphological defects of bands, Liesegang
first pointed out that the sharp localization of precipitation bands
were due to strong attraction of precipitate to solute material.38

Precipitation filaments once formed are thus hindered not only
in radial but also in transversal growth. Apparent ring defects
such as radial alleys of gaps or precipitation filaments located
only at the surface of the gelatin layer or onto the glass plate
were also caused by rapid local depletion of solute material.
Liesegang also described ripening effects in silver halide
emulsions and coined the term “Ostwald ripening”.39* E-mail: krug@physik.tu-berlin.de
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Morphological defects were compiled by Ku¨ster40 from the
viewpoint of plant biology. He generated arrays of precipitation
spots arranged in both radial and transversal rhythms by
polycentric diffusion. Diffusion sources with uneven shapes may
deliver autonomous ring systems with different spacing se-
quences which are linked together by branch points or bridges.
In some cases, bridges do not appear and leave blank alleys
between adjacent ring systems. Liesegang applied the term
“anastomoses”4,41,42for such branched bands, a term originally
coined in medicine. Liesegang first recognized the analogy of
branched precipitation patterns to “pseudoclases” of banded
minerals.42 The influence of diffusion source geometry on ring
formation was reconsidered later,43 also with respect to geo-
science.34,35,37 A further interesting case of ring instability is
the formation of tree-like crystal growth within the bands.44,45

The development of spirals was frequently reported in the
literature.24,27,41,45-52 The first observation of a two-dimensional
spiral was published in 190746 but only later indicated by
Liesegang.48 Spirals are the consequence of branch points
because they break off the concentric symmetry of ideal
Liesegang rings. Three-dimensional spirals in cylindrical vessels
are generated by apparent initial bifurcations in the sequence
of otherwise parallel precipitation disks.24,27, 45,49-52

In the present paper, we compare the results of a prenucleation
and a postnucleation model by simulations in one and two spatial
dimensions. The postnucleation model will consider both colloid
formation and competitive particle growth, whereas the pre-
nucleation model involves only the strong nonlinear dependence
of nucleation rate on supersaturation. Our special attention is
paid to the formation of two-dimensional pattern characteristics
as there are branch points, spirals, and single filaments. Our
aim is to show how these apparent defects are caused by the
mechanisms themselves responding to diffusion source geom-
etry. Finally, we demonstrate by means of the postnucleation
model that the appearance of a colloid front prior to nucleation
is constitutive for creation of sharp rings.

2. Morphological Characteristics of Liesegang Systems

A typical example of a silver chromate Liesegang ring system
with branch points arising from the nonconcentric shape of the
diffusion center is given in Figure 1. The ring system decays
into several sectors with autonomous spacing sequences. The
spatial phase differences arising between adjacent sectors is
commonly equalized by apparent branch points or blank spaces
arranged radially from the diffusion center. Microscopic inspec-
tion of the branch points shows that they consist of three-
dimensional bridges, each connecting the lower part of the one
band with the upper part of the opposite band and vice versa.
Apparent crossing of both bridges is the result of two-
dimensional projection only.40

A concentric turbidity zone surrounds the whole ring system
which serves as the source matter of each freshly arising ring
filament. This turbidity zone is most apparent and narrow at
early stages of the experiment and becomes pale and broader
at later times, as also do the precipitation rings. After creation
of the last outer ring, the turbidity is consumed in its vicinity
until it vanishes completely between the rings. Such a turbidity
zone was first mentioned by Hatschek53 for the silver chromate
system. With respect to the lead iodide system, Le Van and
Ross21 observed a yellow haze, which was interpreted as a
colloid phase, before ring formation. Explicit measurements of
turbidity zones were performed by Mu¨ller et al.54 for the Mg-
(OH)2 system and by Lexa and Holba55 for the silver chromate
system. The occurrence of that colloid phase prior to precipita-

tion is considered to be a strong hint in favor of postnucleation
theories. Note that the density of the turbidity zone in Figure 1,
according to the observations in refs 54 and 55, is nonperiodic,
thus, the periodicity of the later solid bands is not preformed
by any periodicity of the colloidal zone.

Inspection of freshly formed rings using the recipe from
Figure 1 with in situ X-ray microscopy delivered particle radii
between 0.04 and 0.125µm. Probes taken from the turbidity
zone did not contain any particles above the resolution limit
(0.01 µm).

Because of the geometry of the diffusion source, the double-
centered Liesegang system in Figure 2 exhibits a series of blank
radial alleys bordering ring sequences with definite phase shifts
to each other. Also, tall stripes of phase-shifted band sequences
and single spots are inserted into the background of undisturbed
concentric rings.

Figure 3 shows discordances in straight Liesegang bands
emanating from an almost even diffusion source. Here, the ring
system is divided into stripes with autonomous spacing se-
quences. Adjacent stripes are separated at first by blank alleys
which are superseded by branch point at larger distances from
the diffusion source. At other parts, adjacent bands are finally
connected by sigmoidal bridges after the decreasing phase
difference is sufficiently low.

As mentioned above, spiral systems are created by discor-
dances in concentric ring symmetry. Figure 4 shows a ring
system with several anastomoses branching into different
directions. A branch point in the upper right part of the system
generates a counterclockwise winding spiral which is not
canceled out by further bifurcations.

Figure 1. Liesegang rings of silver chromate with apparent bifurcations
(branch points, and blank alleys). Photo taken 25 min after start of the
experiment. The expanding ring system is enveloped by a moving
turbidity zone of colloidal silver chromate. Recipe: 0.5 M AgNO3

solution in the center, 3.4 mM K2Cr2O7 in the gelatin. The gelatin layer
of 1.0 mm thickness was covered by a plate of plexiglass. The silver
nitrate solution (0.3 mL) was applied through a drill hole in the center
of the plate. Horizontal field of view: 24 mm.
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3. The Prenucleation Model

First, we want to simulate the appearance of branch points
and the phenomenon of spiralization by means of a prenucleation
model. The prenucleation model to be employed was originally
proposed by Dee.20 Let us consider now a nonionic chemical
reaction of two components resulting in a hardly soluble product.
Choosing silver monochromate, we have

In contrast of the experimental observation of a turbidity zone,
the Dee model treats the direct conversion of hardly soluble
silver salt C (here Ag2CrO4) from solution to solid phase via
nucleation and linear particle growth. Furthermore, an ionic
formulation of reaction R1 is not considered. Despite these

simplifications, the Dee model generates precipitation patterns
because of the strong nonlinearity in the nucleation rate defined
as

with s* ) (4πσw2/3kBT)1/2, andJc ) 4 πDCwc0
2/d. Here,kB is

the Boltzmann constant,T the temperature,w the capillary
length,σ the surface tension of the flat crystal,c0 the saturation
concentration of C (related to big crystals),d twice the molecular
diameter, andDC the diffusion coefficient of C. The supersatu-
rations is defined ass) c/c0. The nonlinearity in eq 1 is indeed
required for delivering periodic precipitation. Accordingly,
Venzl and Ross56 have shown, in a former paper, that a
nucleation rate less steep in eq 1 than withJ ∼ sn coupled with
linear particle growth is not capable to produce patterned
precipitation. A steep exponential nucleation rate according to
eq 1 was later employed by Le Van and Ross.21 To enforce
precipitation-free interband spaces without Ostwald ripening,
they introduced a nucleation rate completely zero below a critical
value of supersaturation. Other authors52,57-59 simply replaced
the nucleation term (eq 1) by a Heaviside function ins.

The full system considering chemical reaction, diffusion, and
precipitation reads

wherea, b, c, andmare the concentrations of silver nitrate (A),
potassium chromate (B), silver chromate (C), and finally the
solid phase which is considered to be immobile;kR1 is the

Figure 2. Typical blank alleys and single spots generated by a double-
centered Liesegang system (final state). Recipe as in Figure 1.
Horizontal field of view: 40 mm.

Figure 3. Adjacent areas of Liesegang bands of silver chromate with
individual band spacings (final state). Silver nitrate (0.5 M) diffuses
from an almost straight line into the gelatin (5.14 mM K2CrO4). Areas
of bands are either separated by blank alleys or are connected by
anastomoses. The secondary rhythm appearing in the lower part is
caused by phosphate impurities in the gelatin (see also Figure 4).

2AgNO3 + K2CrO4 f Ag2CrO4 + 2KNO3 (R1)

Figure 4. Spiral pattern in a Liesegang system of silver chromate.
The spiral branches off from an apparent bifurcation in the upper right
part near the diffusion source. Recipe as in Figure 1. Thickness of the
gelatin: 1.5 mm. Horizontal field of view: 38 mm.

J(s) ) Jcs
2 exp[-(s*/ln s)2] (1)

∂a
∂t

) DA∆a - 2kR1ab

∂b
∂t

) DB∆b - kR1ab

∂c
∂t

) DC∆c + kR1ab - u(c,t)

∂m
∂t

) u(c, t) (2)
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reaction velocity constant;DA, DB, and DC are the diffusion
coefficients of A, B, and C. Theu(c, t) term denotes the loss of
c due to precipitation. The concentration of solid phasem is
defined as

whereVm is the molar volume of the precipitate,r the particle
radius,x space, andt time.

Restriction to a linear particle growth according to dr/dt )
g(s - 1) permits stepwise differentiation of the integral term in
eq 3 and finally numerical integration of system 2. Furthermore,
let the initial radiusr0 of a particle created at timet be r0 ) w
ln s ≈ w. Then we have foru ) dm/dt

Repeated differentiation of the integral term in eq 4 delivers
supplemental variables which can be interpreted as averages of
radii and surfaces of the particle ensemble atx and t. Let the
local average of radii of particles be defined as

with the particle number densityp

The matter parameters chosen for simulation of the silver
chromate system60 are as follows: σ ) 575 erg cm-2, c0 )
9.15× 10-5 mol L-1, Vm ) 60.1 cm3 mol-1, d ) 9.2 × 10-8

cm (estimated fromVm), DA-DC ) 1.0 × 10-5 cm2 s-1

(arbitrary),kR1 ) 1.0× 103 cm3 mol-1 s-1 (arbitrary), andg )
1.0 × 10-7 cm s-1 (arbitrary).

The capillary lengthw, calculated from

with gas constantR, room temperatureT, and the dissociation
factorυ ) 3 for Ag2CrO4 attains a numerical value ofw ) 9.3
× 10-7 cm which is about one degree of order too large to
obtain periodic precipitation. Sharply modulated patterns were
obtained after decreasing this value to 0.8 to 1.0× 10-7 cm.61

One-Dimensional Simulations.Figure 5 shows a representa-
tive plot of a one-dimensional simulation of a Liesegang pattern
using the formalism given above. The silver nitrate drop is
diffusing there from the left to the right into a medium penetrated
with potassium chromate of constant initial concentrationb0.
The resulting precipitation patternm(x) attained an average level
of b0 as it should be. On the other hand, the modulated particle
number densityp(x) decreases with growing distance from the
silver nitrate source whereas the average of the particle radii
〈r(x)〉 increases. This is in accordance with the common
experimental observation that, with increasing distance of bands
from the diffusion center, the particle number density decreases
accompanied by growing particle radii.

Though the concentration of precipitatem is strongly
modulated because of the modulation ofp, the spaces between
the bands are not completely free of precipitate. This contradicts
the experiment which demands clear interband spaces. Void

spaces cannot be obtained even with extremely high values of
the particle growth rateg, as long as the model is constrained
to linear particle growth dr/dt ) g(s- 1). Clear interband spaces
will be obtained either by vanishing nucleation rates below a
critical supersaturation21 or by postnucleation models to be
demonstrated in section 4.

Furthermore, the biggest particles are formed only between
the precipitation maxima and not within them. The reason for
this behavior is that at low values of supersaturations the
particles created with initial radiiw or w/lns can grow continu-
ously over longer periods becauses is not rapidly diminished
by extensive particle creation. At the precipitation maxima,
however, rapidly increasing supersaturation was immediately
converted into a large number of small particles. After that
conversion, the remaining supersaturation is too low to support
continuous growth of the whole particle ensemble. Thus, the
particles remain small at the maxima of the number densityp.

Two-Dimensional Simulations.If diffusion of silver nitrate
is supplied by an ideal circular or straight source, the results
are concentric rings or parallel bands of precipitate. The
interband distances are, in the case of strong electrolyte
gradients, increasing with growing distance from the diffu-
sion source and can be approximated by the well-known
Jablczynski’s law.62

Now let us consider the coupling of trains of precipitation
bands emanated from nonideal diffusion sources. Figure 6 shows
the simulated plot of two different trains of periodic precipitation
evolved from a ragged silver nitrate source at the top of the
area. Besides the edge of the diffusion source, parallel sets of
bands have been formed with a distinct shift to one another
caused by the source edge. Band shifts below half a local
wavelengthλ between adjacent sets are equalized by sigmoidal
connections between the left and right bands. However, if the
band shift attains half a wavelength, the former one-to-one
connection of the bands is no longer maintained and the bands
are connected by an apparent bifurcation or an anastomosis, in
Liesegang’s term. In other words, the system of connected bands
behaves “elastically” as long as local displacements of half a
wavelength are not attained (compare Figures 1-4). Figure 6
shows a series of such branch points because the relative
displacements of the adjacent trains are aboutλ/2 in most of
the area.

Figure 5. One-dimensional simulation of a Liesegang experiment
according to the prenucleation system (2): Logarithmic plots of particle
number densityp (per cm3), precipitate concentrationm (in mol cm-3),
and average of particle radii〈r〉 (in cm). Final state, aftert ) 3:00 h.
A silver nitrate drop ofa0 ) 1.0 M of 2 mm length placed on the left
diffuses into a region withb0 ) 5.14 mM potassium chromate.
Parameters are as given in the text, here withw ) 8.0 × 10-8 cm.

m(x, t) ) 4π
3Vm

∫0

t
J(x, t′) r3(x, t, t′) dt′ (3)

u(x, t) ) 4π
3Vm

[J(x, t)w3 + 3g(s - 1)∫0

t
J(x, t′)r2(x, t, t′)dt′]

(4)

〈r(x, t)〉 )
∫0

t
J(x, t′)r(x, t, t′) dt′

∫0

t
J(x, t′)dt′

(5)

p(x, t) ) ∫0

t
J(x, t′) dt′ (6)

w )
2σVm

υRT
(7)

7814 J. Phys. Chem. A, Vol. 103, No. 39, 1999 Krug and Brandtsta¨dter



The same result is obtained when a straight diffusion source
involves a distinct concentration step as shown in Figure 7. The
band trains have no initial band shift but develop with different
spatial increments per band. The result is a increasing band shift
between the left and the right train. The source concentration
at the left side of the upper boundary in Figure 7 is one-third
compared to the right part, thus the bands on the left evolve
more widestanding than the right bands. The result is the
formation of three anastomoses connecting both trains. Branch
points can also be constructed if a ring system is built up by an
unsymmetric polycentric diffusion source. In Figure 8, two
centers with different silver nitrate concentrations force the

emanation of adjacent ring systems with individual wavelengths
and, thus, apparent splitting of bands.

Figure 4 demonstrated how a branch point or anastomosis
transforms a series of concentric rings into an outwardly winding
spiral. An example of a simulated spiral is given in Figure 9.
The upper right edge of the central diffusion source forces the
creation of a branch point that prevents subsequent formation
of closed rings, the resulting “free end” of banded precipitation
forms a spiral. It should be noted here that, both in experiment
and in numerical simulation, the spiral arms are not growing
continuously in transversal directions. In fact, there appear at

Figure 6. Two-dimensional simulation of a Liesegang experiment
according to system (2). Final state, after 60 h. Grayplot of logm
(precipitate concentratedm in mol cm-3), grayscale in 255 steps between
-8 (white) and-4 (black). Due to the ragged contour of the silver
nitrate drop ahead, a series of branch points or anastomoses is created.
Parameters follow Figure 5, here withw ) 1.0 × 10-7 cm. Initial
concentrations:a0 ) 0.3 M (contour ahead),b0 ) 5.14 mM. Horizontal
field of view: 48 mm. Grid point density: 4 points per mm.

Figure 7. Two-dimensional simulation of a Liesegang experiment
according to system (2). Final state, after 60 h. Grayplot of logm as in
Figure 6. Here, diffusion of silver nitrate takes place across the open
upper boundary with different source concentrations. Boundary con-
centrations:a0 ) 0.1 M on the left (0 to 34.5 mm) anda0 ) 0.3 M on
the right (34.5 to 52 mm);b0 ) 5.14 mM. Horizontal field of view:
52 mm. Other parameters and scalings, see Figure 6.

Figure 8. Two-dimensional simulation of a Liesegang experiment
according to system (2). Final state, after 80 h. Grayplot of logm as in
Figure 6. Here, diffusion of silver nitrate proceeds from a couple of
drops (r ) 20 mm) of different concentrations:a0 ) 0.1 M in the left
anda0 ) 0.3 M in the right drop;b0 ) 5.14 mM. Horizontal field of
view: 52 mm. Other parameters and scalings, see Figure 6.

Figure 9. Simulation of a spiral system of Liesegang rings using system
(2). Grayplot att ) 83:20 h. The radial symmetry breaking branch
point is induced by the ragged contour of the central silver drop. Initial
concentrations:a0 ) 0.7 M within the drop,b0 ) 5.14 mM throughout.
Horizontal field of view: 74 mm (full simulation field: 88× 88 mm).
Other parameters and scalings, see Figure 6.
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first single filaments of precipitate which later join together, as
also do concentric rings with nonideal symmetry. Figure 9 shows
that the outer arm of the spiral is composed of filaments which
will be joined later. Furthermore, the spiral arm exhibits on the
right a second bifurcation that obviously will rearrange the
concentrical symmetry of the ring system.

The formation of three-dimensional spirals24,27,45,49-52 in
cylindrical vessels mentioned above can in the same manner
be considered a consequence of such symmetry breaking.
Ideally, we observe in cylinders an ensemble of thin parallel
disks. This translational symmetry can be broken by a little
distortion at the junction between the outer and the inner
electrolyte. This primary distortion may give rise to a sequence
of precipitation disks with increasing undulations, until at one
point the undulation jumps over to the beginning of a staircase
winding downward.52

4. An Extended CPG Model

Let us now discuss a competitive particle growth (CPG)
model which considers both formation of a colloidal turbidity
zone prior to precipitation and Ostwald ripening, phenomena
neglected in the model discussed above.

The CPG model after Ortoleva et al.29-31,33 is based on the
assumption of a constant and uniform particle number density
n formed by a preceded nucleation process.63 Competition of
growing particles between related volume elements leads to
formation of bands constituted of bigger particles separated by
spaces of vanishing small particles at the expense of which the
bigger within the bands have grown.

In our CPG model, we want to introduce the nucleation
process explicitly with the formation of a colloid phase
corresponding to the turbidity zone enclosing the outer precipi-
tation ring. The colloid phase consists of very small particles
of only a few molecules of silver chromate.55 These conglomer-
ates of molecules do not yet have a free surface like bigger
particles to be treated energetically by the Gibbs-Thompson
relation. Thus, such colloid phases may be stable at low values
of supersaturation. Their stability is further supported by
adsorption of gelatin particles thus acting as a protective
colloid.64

Considering again the silver chromate reaction R1 from
section 3, let the nucleation rateJ of the colloid particles be

Supersaturations ) c/c0 is defined as above. Initial radiir0 of
the colloid particles are derived from a polynomial equilibrium
function seq (r) which comprises both colloid and developed
solid particles (Figure 10). This polynomial function is defined
as

wherew is the capillary length defined in eq 7. Here,seq(r)
attains its maximum at the critical valuerc separating the colloid
phase (r < rc) from the phase of solid particles (r > rc), for
which the Gibbs-Thompson relationseq(r) ) exp (w/r) is
approximated (Figure 10). Let the growth rate of the radii be

The partial differential equations for our extended CPG system
are identical to eq 2 from section 3. The main difference to the

Dee system is the mass conversion term dm/dt ) u(x, t). After
discretization of both space and time, the integral formulation
of m(x, t) in eq 3 can be transformed into a sum over an
ensemble of distinct generations of growing (or decaying)
particles once formed:

Vm is the molecular volume of the precipitate,i and j are the
indices of the discrete volume elements in vertical and horizontal
direction,nG is the particle generation number attained at time
t ) t0(i, j) + nG∆tG(i, j), andpijk is the local particle number
density accumulated during thekth particle generation.

The particle ensembles are considered to be monodisperse
within each generation. If supersaturations(i, j) exceeds any
critical vale, say,sc ) 1.1, the first generation of colloid particles
is created and grows (or later decays) according to eq 10. As
long ass > sc, further generations of durations∆tG(i, j) are
created. Withs < sc, after the moving front of supersaturation
has passed, the formation of new particles is terminated, but
the growth or decay of the generations once formed is further
considered. In our simulations, we limited the maximum number
of generations in each volume element tonG

max (i, j) ) 50. Thus,
the individual lengths of the generation time intervals∆tG(i, j)
increase with the distance of the grid point (i, j) from the
diffusion source of silver ions.

As long asr < rc, particles created are considered as colloids
and form a stable turbidity zone. When supersaturationsexceeds
the maximum valuesmax ) 1 + w3/2rc

3 according to the
equilibrium function (eq 9), the colloid particles attaining the
radius rc turn over to solid particles with thermodynamic
behavior. Now they follow the Gibbs-Thompson relation and
grow rapidly at the expense of local supersaturation and,
consequently, at the expense of colloid phases in surrounding
volume elements.

In our calculations, the value of capillary length was chosen
to bew ) 1.45× 10-3 µm. The values of the critical radiusrc

were 0.36w and 0.45w. Thus, the range of particle radii within
the colloid phase in the model is far below the resolution limit
of X-ray microscopy (0.01µm) employed in investigating the
turbidity zone in experiment (section 2). A colloid particle with
r ) 0.45w should, after a rough estimation, consists of about
11 molecules of silver chromate.

One-Dimensional Simulations.Figure 11 shows an example
of a one-dimensional simulation of the extended CPG system.

J(s) ) kjs
5 (8)

seq(r) ) 1 + w3r3

r6 + rc
6

(9)

dr
dt

) krc0[s - seq(r)] (10)

Figure 10. Equilibrium curves of supersaturationseq(r) of the CPG
system. Solid curve: polynomial function according to eq 9, withrc )
0.36 w. Dotted curve: Gibbs-Thompson relationseq(r) ) exp(w/r).

mij(t) )
4π

3Vm
∑
k)1

nG

pijkrijk
3 (t) (11)
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The diffusion source from the left causes first a distinct zone
of continuous precipitation which turns over to sharp bands with
clear interband spaces. In front of the last precipitation band, a
colloid zone with small particles is formed. This colloid phase
is gradually consumed in the vicinities of the last and the
preceding bands until these particles are completely removed
between the bands. In contrast to the prenucleation model, the
particle number densityp is only weakly modulated here. The
distinct periodicity ofm in the CPG model is mainly due to the
strong segregation of particles with different radii. The particle
radii within the precipitation bands of Figure 11 attain values
of about 0.1µm, just 70 times greater than the capillary length
w. These simulated radii coincide well with the particle radii
of freshly precipitated rings (0.04 to 0.125µm) obtained by in
situ X-ray microscopy (section 2).

The grayplot of the same simulation (Figure 12) shows the
continuous time evolution of such a sharp band system. It can
clearly be seen, how dark bands are abruptly created from
density maxima of the colloid zone and finally exhaust their
feeding zones.

It should be noted that the phenomenon of Ostwald ripening,
both in model and in experiment, works on two different time

scales: Freshly arised ring particles are rapidly growing to the
debit of the surrounding colloid particles. Only this process is
pattern forming. At very larger time scales, competition between
solid particles within the bands leads to a coarsening of the
particle size distribution. This process is subsequent and not
responsible for the formation of the bands themselves.

Two-Dimensional Simulations.Numerical experiments with
the extended CPG model show, besides the expected longitu-
dinal periodicity of bands, also a transversal rhythm. This
transversal periodicity may occur, if the mass density within
the moving prenucleation front is transversally modulated by
interference of different diffusion centers. Transition to solid
phase occurs first at the maxima of the modulated front, thus
giving rise to single precipitation filaments which remain
isolated. Rapidly growing solid particles within single spots or
filaments cause a draining of solute or colloidal material in both
transversal directions.

Figure 13 shows a simulated Liesegang system generated by
diffusion of silver ions from a couple of identical drops. The
rings remain concentrical as long as the diffusion fields of each
drop are undisturbed. After the third ring, both systems join to
a lemniscate. This lemniscate is also found in the colloidal front
whose density is slightly modulated with local maxima at the
intersection points of undisturbed rings. Precipitation naturally
starts at those local maxima and tries to continue in lateral
directions. But with increasing distance from the diffusion
sources, the diffusion halos of chromate ions B, and silver
chromate C, respectively, become broader due to the shallower
gradient of silver ions A. Local halos produced by the first
filaments in the rings will not be equalized by diffusion as
rapidly as in the first rings. Consequently, precipitation finally
takes place only at the mentioned points of the intersection,
thus forming a grid of filaments. The residual of the turbidity
zone in the right part of Figure 13 shows clearly the draining
effect of single spots in each direction. Such a double-periodic
precipitation grid can be found in the right part of the Liesegang

Figure 11. One-dimensional simulation of Liesegang bands with the
extended CPG model. Plot att ) 33:20 min. Parameterskj ) 1.0 ×
104 cm-3 s-1, kr ) 1.0 × 10-4 cm M-1 s-1, σ ) 90.0 erg cm-2 (w )
1.45 10-7 cm), rc ) 0.36w. Concentrations:a0 ) 1.0 M betweenx )
0 and 1.0 mm;b0 ) 5.14 mM throughout; other parameters as in the
Dee model (section 3). Particle number densityp is scaled in cm-3,
solid mass densitym in mol dm -3, particle radiusr (dotted) in cm.

Figure 12. Grayplot of the spatiotemporal evolution of mass density
log m after the extended CPG model. Parameters and scaling as in
Figure 11.

Figure 13. Two-dimensional simulation of a double-centered Liese-
gang system with the extended CPG model att ) 6:00:00 h. Grayplot
of mass density logmshowing dark bands of precipitate and a residual
of the turbidity zone. Parameters:kj ) 1.0× 105 cm-3 s-1, kr ) 1.0×
10-5 cm M-1 s-1, rc ) 0.40 w. Concentrations:a0 ) 1.0 M within
identical drops ofr ) 3.5 mm,b0 ) 5.14 mM throughout. Vertical
field of view 16 mm, grid point density: 10 points per mm. Other
parameters and scalings, see Figures 11 and 12.
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experiment in Figure 2. First observation of this double
periodicity was made by Ku¨ster with lead iodide.40

If the concentration of the lower drop is increased, the result
is the expected phase shift between the upper and the lower
ring system (Figure 14). Phase differences are not equalized by
sigmoidal bridges or anastomoses as obtained by the prenucle-
ation model (Figure 8). Here, using the CPG model, phase
differences induce a wedge of void space between the ring
systems. The reason is the lower mass density of the colloidal
front within the zone of adjacent ring systems compared to the
rings themselves where precipitation starts first and leaves the
central wedge blank. Also, the simulations with the prenucle-
ation model in section 3 indicated that the mass density of the
precipitate is slightly lower within the anastomoses than in the
regular bands (Figures 6-8).

Figure 15 shows the development of bands from a diffusion
source with sigmoidal contour. The contour generates indepen-
dent band systems which are separated by a central wedge
bearing a tall stripe of bands with shifted phase (compare Figure
2). A second wedge rises near the right bottom of the picture.
The same idea of forced phase shift is accomplished in Figure
16. Autonomous band systems are here created by different
silver ion concentrations at the straight upper boundary. The
result is a clear wedge that opens after the phase difference
between the trains has achieved the value of aboutλ/2.

5. Discussion

Liesegang rings, even when constricted to precipitation of
silver chromate, appear in manifold fashions depending on the
nature of the diffusion medium. In silica gel, only chains of
single crystals are formed instead of continuous rings of
amorphous precipitate.37 Continuous rings both with branch
points and blank alleys are obtained in gelatin gels (Figures
1-4). Gelatin is known to serve both as protective colloid,
stabilizing the colloid phase, and poisoning colloid,64 which
hinders freshly formed particles from rapid and radius-dependent
growth at the expense of solute phase. Thus, Ostwald ripening
leading to coarsening to a few single crystals of silver chromate
does not take place in gelatin systems.

The prenucleation model (section 3) is rather appropriate for
systems with inhibited particle growth. Commonly observed
pattern characteristics such as branch points and spiralizations
can comfortably be simulated with the prenucleation model
where the particle growth is not radius dependent. On

Figure 14. Two-dimensional simulation of a double-centered Liese-
gang system with the extended CPG model att ) 6:50:00 h. Grayplot
of mass density logm. Initial concentrations:a0 ) 1.5 M (lower drop),
a0 ) 1.0 M (upper drop). Radius of both drops:r ) 3.5 mm,b0 )
5.14 mM throughout. Other parameters and scalings, see Figure 13.Figure 15. Two-dimensional simulation of a Liesegang system with

the extended CPG model. Final state, att ) 6:50:00 h. Grayplot of
mass density logm. Initial concentrations:a0 ) 1.0 M within a
sigmoidal contour at the top of the field,b0 ) 5.14 mM throughout,rc

) 0.45 w. Other parameters and scalings, see Figure 13. Horizontal
field of view: 11.2 mm.

Figure 16. Two-dimensional simulation of a Liesegang system with
the extended CPG model. Final state, att ) 6:50:00 h. Grayplot of
mass density logm. Here, silver nitrate with different concentrations:
a ) 1.0 M at the left (0 to 12.2 mm) anda ) 3.0 M at the right (12.2
to 14.4 mm) part intruded from the upper boundary,b0 ) 5.14 mM
throughout,rc ) 0.45w. Other parameters and scalings, see Figure 13.
Horizontal field of view of the left cut seen here: 11.2 mm, (14.4 mm
of the full picture).
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the other hand, the prenucleation model does not describe the
formation of a turbidity zone of embryonic nuclei from which
the rings finally arise. Clear spaces between the rings can only
enforced by special assumptions on the nucleation rate. But
assumption of vanishing nucleation rate at low supersaturations21

contradicts the occurrence of a continuous, nonperiodic colloidal
front prior to the ring systems.

The extended CPG model (section 4) comprises both forma-
tion of a turbidity zone at lower supersaturations and, after a
certain critical radiusrc is exceeded, a subsequent growth of
solid particles at the expense of the colloidal zone. The results
of this model are sharp bands, void spaces between the bands,
and morphological defects of the bands (alleys of gaps and
transversal rhythm of filaments). Branch points of continuous
rings found with the prenucleation system are replaced by void
gaps because of the strong competition of growing particles with
the colloidal phase. Appropriate modification on the equilibrium
functionseq (eq 9) such as the introduction of a certain particle
radius limit should simulate the poisoning effect of gelatin on
the surfaces of growing particles, thus delivering more continu-
ous bands with branch points or anastomoses.
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(46) Rothmund, V.Löslichkeit und Lo¨slichkeitsbeeinflussung.) Hand-
buch der Angewandten Physikalischen Chemie in Einzeldarstellungen. (Hrsg.
G. Bredig) Vol. 7, Joh. Ambr. Barth: Leipzig 1907; pp 5-14.

(47) Liesegang, R. Ed.Chemische Reaktionen in Gallerten; Th. Steinko-
pff: Leipzig, 1924; p 67.

(48) Liesegang, R. Ed. Spiralenbildung bei Niederschla¨gen in Gallerten.
Kolloid-Z. 1939, 87, 57-58.

(49) Tillmans, J.; Heublein, O. Neues von den Liesegangschen Ringen.
Umschau (Frankfurt a. M.)1914, 19, 930-933.

(50) Hatschek, E. Der Einfluss des Lichtes auf Bleichromat-Schichtun-
gen.Kolloid-Z. 1925, 37, 297-298.

Liesegang Rings J. Phys. Chem. A, Vol. 103, No. 39, 19997819



(51) Müller, S. C.; Kai, S.; Ross, J. Curiosities in periodic precipitation
patterns.Science1982, 216, 635-637.

(52) Chernavskii, D. S.; Polezhaev, A. A.; Mu¨ller, S. C. A model of
pattern formation by precipitation.Physica D1991, 54, 160-170.

(53) Hatschek, E. Silberchromatschichtungen in Kieselsa¨uregel.Kolloid-
Z. 1926, 38, 151-154.

(54) Kai, S.; Müller, S. C.; Ross, J. Measurements of temporal and spatial
sequences of events in periodic precipitation processes.J. Chem. Phys.1982,
76, 1392-1406.

(55) Lexa, D.; Holba, V. Periodic precipitation of silver chromate/
dichromate in gelatin.Colloid Polym. Sci.1993, 271, 884-890.

(56) Venzl, G.; Ross, J. Nucleation and colloidal growth in concentration
gradients (Liesegang rings).J. Chem. Phys.1982, 77, 1302-1307.
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